Introduction

- **Tissue Marker**
 - codes or “fingerprints” to assist the immune system to differentiate between “self” and “alien” cells
 - “alien” cells are destroyed to protect the body

- **Immune Response**
 - target specific defense against foreign or cancer cells
 - This Response is carried out by lymphocytes located in the blood and lymphoid tissue
 - In life threatening situations
 - Hyperactivity
 - Hypoactivity
The Structure of the Immune System

• The Immune System
 – is a group of specialized WBC's and lymphoid tissue for protection from outside invasion and from altered cells within the body
• Support by
 – Natural killer (NK) cells
 – Antibody
 – Proteins

White Blood Cells

• Leukocytes
• Produced by the bone marrow
• All cells begin as stem cells (nonspecific) and later become specific

Lymphocytes

• T-Cells or B-Cells
 – 20-30%
 – distinguish harmful substances
• T-Cells
 – made in the bone marrow
 – move to the thymus gland to mature
 – become regulator T-Cells or effector T-Cells
 • Regulator cells are a combo of helper and suppressor cells
 • Effector cells are killer or cytotoxic cells
Lymphocytes

• Helper T-Cells
 — Fight infection
 — Recognize antigens
 — Stimulated T-Cells clones to produce antibodies

• Cytotoxic Cells
 — attach to invading cells
 — Alter their cell membrane
 — destroys the invader
 — Produce chemicals - **lymphokines** to bring neutrophils and monocytes to clean up the area

Lymphocytes

• B-Cell lymphocytes
 — mature in the bone marrow
 — move to the spleen and lymph node

• Stimulation of the B-Cell by T-Cell causes the B-cell to become either plasma cells or memory cells

Lymphocytes

• **Plasma Cell** produce antibodies – this is called *Humoral Response*

• **Memory cells** convert to plasma cells when re-exposed to specific antigen
 — Swollen / tender lymph nodes occur when activated B-Cells accumulated in lymph tissue during an infection
 — Swollen spleen occurs during immune disorders
Neutrophils and Monocytes

- These are phagocytes – which do **phagocytosis**
- **Phagocytosis** is the process of engulfing and digesting bacteria and foreign material
- Can be stationary or mobile
Neutrophils

- Neutrophils
 - Microphages because of small size
 - Located in the blood and can move into tissue as needed
- Monocytes
 - Macrophages because of large size
 - Are located in the lungs, liver, lymph nodes, spleen, and peritoneum
 - Migrate after cell mediated response known as Reticuloendothelial System

Lymphoid Tissue

- Plays a role in immune response—help prevent infection
- Lymphoid tissue—also found on
 - Mucous membranes of intestine
 - Alveolar tissue in lungs
 - Lining of liver

Lymphoid Tissue

- Thymus gland—located in neck below thyroid gland
 - Produces lymphocytes during fetal development
 - Origin of spleen, liver, lymph nodes
 - After birth, programs T lymphocytes to become regulator or effector T-Cells
 - Reduces in size during adolescence
Lymphoid Tissue

- Tonsils are found on either side of the soft palate
- Adenoids located behind the nose on posterior wall of the nasopharynx
- Both tonsils and adenoids filter bacteria from tissue fluid

Lymphoid Tissue

- The spleen acts as an emergency reservoir for blood and filters the blood
- Old, dead or damaged blood cells in the circulation and bacteria are removed by macrophages located in the spleen

Lymphoid Tissue

- The lymph system contains Lymph nodes
 - lymph fluid is drained
 - contain B Lymphocytes & T Lymphocytes
 - in the axilla, groin and neck
 - palpable when enlarged
Natural Killer Cells (NK)

- Lymphocyte like cells - find virus infected cells and cancer
- Can ID atypical marker on cell – they don’t need T or B Lymphocytes
- Release chemical to alter target cell’s membrane and kill it

Natural Killer Cells (NK)

- Cancer cells can escape – this is how cancer cells become established and spread beyond primary site
Antibodies

- These are proteins produced by the B lymphocytes plasma cells
- Are called immunoglobulins (Ig)
- 5 Classes of Immunoglobulins
 - IgA
 - IgD
 - IgE
 - IgG
 - IgM

Antibodies

- Immunoglobulins attach to antigens and destroy invading cells by
 - Neutralizing the toxins
 - Agglutinating the cells
 - Causing the antigen to become soluble

Antibodies

- Facilitate the destruction of the antigens by
 - Non-antibody proteins
 - The complement system
 - Cytokines
Non Antibody Proteins

• The Complement System
 – Made up of many different proteins
 – When an antibody binds with an antigens, a chain reaction occurs between the different proteins

• Non Antibody Proteins
 – Proteins work with antibodies to attract phagocytes to coat the antigens
 – Making the antigens more recognizable for phagocytosis
 – This stimulates inflammation through the release of histamine from mast cells and basophils

Non Antibody Proteins

• Cytokines
 – Chemical messengers release by lymphocytes, monocytes and macrophages
 – Sub groups includes
 • Interleukins
 • Interferons
 • Tumor necrosis factor
 • Colony stimulating factors
Lymphocytes

• Suppressor T-Cells
 – Limit or turn off the immune response when there are no invaders
 – When T-Cell lymphocytes do their job it’s called a cell-mediated response – occurs when organ is transplanted

Non Antibody Proteins

• Interleukins carry messages between leukocytes and blood forming tissues

Non Antibody Proteins

• Interleukins activities include
 – Promotion of inflammation & fever
 – Formation of scar tissue by fibroblast
 – Growth and activation of NK cells and T cells
 – Production of mast cells
 – Growth of B cells, formation of plasma and antibodies
 – Angiogenesis
 – Stimulation of the pituitary to secrete corticotrophin
Non Antibody Proteins

- **Interferons** ~ Chemical to protect cells from viral invasion
 - Works by slowing viral replication
 - Used as adjunctive therapy for AIDS and some forms of Leukemia
 - They stimulate NK Cell activity

Non Antibody Proteins

- **Tumor Necrosis Factor** is a type of cytokine
 - Was first thought to be a means for shrinking tumors
 - It worked in lab animals but not in humans
 - Experimenting with injection straight into tumor to decrease toxicity
 - It aids in cellular repair if used in small amounts
 - It is being regulated for some autoimmune and inflammatory disorders

Non Antibody Proteins

- **Colony Stimulating Factors**
 - Are cytokines to regulate production, maturation and functions of blood cells
- Growth factors allow stem cells in the bone marrow to divide into specific types of cell
 - Leukocytes
 - Erythrocytes
 - Platelets
Non Antibody Proteins

• Pharmocologic preparations are used to promote natural production of blood cells
 – Epoitin Alfa ~ Epogen
 – Filgrastim ~ Neupogen
 – Sargramostin ~ Leukine

• These reduce the risk for infection in pts receiving antineoplastics drugs
• Speed recovery in pts receiving bone marrow transplants
• Decrease the need for repeat blood transfusions in renal failure pts

Types of Immunity

Three types of Immunity
• Naturally acquired active
• Artificially acquired active
• Passive immunity
Types of Immunity

Naturally Acquired Active Immunity
- Direct result of an infection by a specific microorganism
- Immunity to measles or chicken pox develops after initial infection
- Not all invading microorganisms give life long immunity

Artificially Acquired Active Immunity
- Results from administration of a killed or weakened microorganism or toxoid
- B Lymphocytes make a “memory cell” to recognize the weakened or killed microorganism for future invasion protection

Artificially Acquired Active Immunity
- Some immunization recommend for adulthood to provide adequate immunity
 - Tetanus
 - Influenza
 - Smallpox
Types of Immunity

Passive Immunity
- Develops when ready made antibodies are given to a susceptible person
- Provide short lived protection

Passive Immunity
- No memory cells are produced and antibodies diminish over weeks to months
- Ready made antibodies are obtained from the serum of another organism – animal or human

Passive Immunity
- Immune serum globulins
 - gamma globulin or immunoglobulins may be obtained from human plasma
 - Pt may received more than one specific antibodies
Passive Immunity

Immune serum globulins

- Human immune serum can be used for passive immunization against
 - Measles - Rubella
 - Whooping cough - Pertussis
 - Hepatitis B
 - Chicken Pox - Varicella
 - Tetanus

Passive Immunity

- Newborns receive passive immunity to some disease from Mom for disease which she develop
- The circulating antibodies cross the placental barrier last for only a few months after birth

Assessment

History

- Get Immunization Hx
- Recent and past infections
- Review drug Hx ~ Corticosteroids
- Hx of Allergies
- Practices that put pts risk for AIDS
Assessment

• Physical Examination
 – General health status
 – V/S wt
 – Skin Assessment
 – Assess abd for enlarged liver or spleen
 – Assess pharynx for enlarged, inflamed tonsils, purulent drainage
 – Palpate lymph nodes in neck, axilla and groin for enlargement and tenderness

Assessment

Diagnosis Test

• Lab Test
 – CBC with Diff
 – Protein electrophoresis
 – T cell or C cell assays
 – Genetic disorder test
• Skin Test
 – PPD for TB
 – Anergy ~ the ability to have immune response

Nursing Management

• Identification of any allergies
• Explain all diagnostic test
• Obtain written consent before HIV testing - Keep confidential
• Use standard precautions
• Follow agency policy and guidelines for protecting pt
• Include pt teaching for immunization and drug therapy
Considerations

- Nutritional
- Pharmacological
- Gerontologic

QUESTION????
Is the following statement true or false?
There is more than one type of hypersensitivity response.

QUESTION????
Is the following statement true or false?
T-cell lymphocytes mature in the thymus gland.
QUESTION???

Is the following statement true or false?

The complement system is involved in opsonization.