Chapter 23
Caring for Clients with Burns

Burn Injuries

- 4500 people die from burns each year
- High risk group ~ children and the elderly
- The most common cause of burns
 - Smoking material
 - Scalding
 - Lighting trash fires or furnaces

Burns

- A burn is a traumatic injury to skin and underlying tissue
- Causes of burns:
 - Thermal Heat
 - Chemicals
 - Electricity *~ most damaging
 - Radiation
Thermal Burn

Chemical Burn – Sulfuric Acid

Electrical Burn

Radiation Burn

Pathophysiology and Etiology

- Heat is initial cause of cell damage
- Thermal burns cause the protein in cells to coagulate
- Chemical burns liquefy the tissue and loosen attachment to sub-layers
- Electrical burns are greatest at point of entry and exit
Pathophysiology and Etiology

The Initial Burn Injury Effects:

- **Inflammatory processes**
 - Injures the healing tissue
 - Deactivates tissue growth factors
 - Neutrophils consume available O2 at wound site = tissue hypoxia
 - Injured capillaries thrombose = localized ischemia & tissue necrosis
 - Bacteria colonization, mechanical trauma, and even topically applied antimicrobials can damage viable tissue

Pathophysiology and Etiology

- **Serious burns cause:**
 - Various neuroendocrine changes in the first 24 hours
 - Hyperglycemia
 - Sodium retention = peripheral edema & oliguria
 - Hypermetabolic state = requires more O2 and nutrition
 - Fluid shifts: Ex. Fluid Volume Deficit
 - Edema at burn sites
 - Fluid loss from Seepage
 - Decreased B/P
 - Shock
 - Nursing Diagnosis: Fluid Volume Deficit related to fluid loss from seepage 2° Burns

Pathophysiology and Etiology

Fluid shifts, electrolytes deficits and loss of extracellular proteins can cause:

- Anemia
- Inadequate nutrition of cells and organs from poor circulation
- Gastric ulcers
- Possible renal failure
- Death from complications
Depth of Burn Injury

Burn depth is determined by assessing:
- Color
- Characteristics of skin
- Sensation in the area
- See Table 23-1, pg 307 *

- Burn depth is classified as:
 - Superficial ~ 1st degree
 - Partial Thickness ~ Superficial and Deep 2nd Degree
 - Full thickness ~ 3rd & 4th Degree
 - See Figure 23-1, pg 306
Depth of Burn Injury

• Superficial ~ 1st degree
 – Similar to a sunburn
 – Epidermis is injured, dermis unaffected
 – Red, painful, heals in less than 5 days

• Superficial Partial Thickness ~ 2nd degree
 – Epidermis & dermis are injured, Hair follicles intact
 – Heals in 2 weeks, some pigment changes, no scarring
 – Pink to red, painful, blistered or exuding fluid
 – Blanches with pressure

• Deep Partial Thickness ~ 2nd Degree
 – Epidermis & dermis are injured, Hair follicles intact
 – Heals in 3 weeks, may need debridement, possible scarring, may need skin grafts
 – Patchy red to white, wet or waxy dry
 – Painful with pressure only
 – No blanching with pressure
Deep Partial Thickness ~ 2nd Degree

Depth of Burn Injury

- **Full thickness ~ 3rd Degree**
 - Destroys all layers of the skin
 - Epidermis, dermis, and subcutaneous tissue
 - Skin charred and lifeless
 - Bright red, white, tan, brown, black; leathery covering (eschar)
 - Painless
 - Debridement required
 - Skin Grafts necessary
Depth of Burn Injury

• Full thickness ~ 4th Degree
 – Destroys all layers of the skin ~
 • Epidermis, dermis and subcutaneous tissue
 – Skin charred and lifeless
 • Black, depressed, scarring
 • Painless
 – Debridement required
 – Skin Grafts necessary
Zones of Burn Injury

• Zone of Coagulation ~
 – The center of the injury
 – Where the injury is most severe and deepest

• Zone of Stasis ~
 – The intermediate burn injury area
 – Blood vessels are damaged
 – Tissue can survive
 – Can convert to zone of coagulation if circulation impaired

• Zone of Hyperemia ~
 – Zone of the least injury
 – Minimal damage to epidermis and dermis

• See figure 23-4, pg. 307

Extent of Burn Injury

• See Figure 23-5 and 23-6, pg 308
• Determined by estimating how much surface skin is involved using “Rule of Nines”
• Total Body Surface Area ~ TBSA
• Example:
 – Palm of hand is 1%
 – Head is 9%
 – A arm is 9%
 – A leg is 18%
 – Each side of the trunk is 18%

Rule of Nines
Assessment Findings

- Skin Color ~ Ranges from light pink to black
- Edema or blistering
- Pain ~ Except in full thickness burns
- Pt may exhibit signs of Hypovolemic Shock
 - Hypotension
 - Tachycardia
 - Oliguria or anuria and Breathing Difficulties

Medical Management

- Three major complications ~ Can be life threatening
 - Inhalation injury
 - Hypovolemic shock
 - Infection

Medical Management

- Initial First Aid
- Prevent further injury
 - Secure airway ~ Monitor respirations/Transport
 - Signs and symptoms of inhalation injury
 - See Box 23-1, pg. 308
- Administer O2 and IV en route to a hospital
Medical Management

Acute Care

• Assess the extent of the burn injury and other traumas ~ fractures, head injuries, lacerations, etc.
• Priority in treating burn injuries are:*
 – Ventilation* May need ET tube or trach
 – Initiating Fluid Resuscitation*
 – Pain Control*
 – Treatment of the Burns

Medical Management

Acute Care ~ continued

• Draw Blood
• Fluid Resuscitation
• Pain Management
• Foley Catheter
• Antibiotics
• Tetanus Immunizations

Medical Management

Wound Management

• Prevent infection(Most common organism is staph aureus, Pseudomonas, and candida
• Remove clothing
• Shave hair ~ source of infection
• Cleanse area to remove debris
• Lubricate lips and eyes
• Wound Management includes:
 – The open method ~ the wound is left uncovered
 – The closed method ~ the wound is covered
 – Table 23-3, pg 310
Medical Management

Wound Management ~ The Open Method

- Exposure method ~ left open to air
- Rarely used or used on a small scale ~
 - face or perineum
- Requires isolation
 - Sterile linens, visitors and health care providers wear sterile gowns and mask
 - Skin is sensitive to temperature changes & drafts
 - keep room warm and humidified
 - Protect patient from drafts and temperature changes

Wound Management ~ The Open Method

- In 2 or 3 days, a hard crust forms over a partial thickness burns
- Epithelialization (regrowth of skin) in 2-3 weeks
- Crusts fall off, is debrided, or loosen by whirlpool
- Eschar ~
 - Hard leathery crust of dehydrated skin
 - Form in full thickness burns
 - Constricts and impairs circulations
 - New skin can not grow under eschar
- Escharotomy ~ incision into eschar
 - Removal of eschar
 - Relieves pressure

Medical Management

Wound Management ~ The Closed Method

- Is the preferred method of wound management
- Burn area is covered with
 - Nonadherent & Absorbent dressing
 - Covered with petroleum jelly / antibiotic ointments
 - Finally covered with occlusive or semi-occlusive dressing
 - Protection from bacteria
 - Minimally permeable to water and O2
 - Trend is to change dressing only once a day due to pain (unless infected)
Medical Management
Antimicrobial Therapy

• 3 Major Antimicrobials used to treat burns
 – Silver sulfadiazine ~ Silvadene (most common)
 – Mafenide ~ Sulfamylon
 – Silver Nitrate

• Other drugs used:
 – Betadine ~ contraindicated with some skin substitutes
 – Garamycin, Furacin
 – Bactroban, Lotrimin, and Loprox

• All drugs applied require using Sterile Technique*
• Most pt’s require IV antibiotics and anti-fungals

Surgical Management

• Debridement
• Skin Grafting
• Skin Substitutes
• Cultured skin

Debridement

• Debridement is the removal necrotic tissue
• Occurs 1 of 4 ways
 – Naturally ~ sloughs away
 – Mechanically ~ dead tissue adheres to dressing
 – Enzymatically ~ removed through topical enzymes
 – Surgically ~ with forceps and scissors during dressing changes or wound cleansing
• Healthy tissue must be covered with a skin graft after debride
Skin Grafting

- Skin Grafting is necessary for deep partial thickness or full thickness burns
- Wounds greater than 2cm may not granulate fully, leading to a chronic open wound
- Unassisted healing could lead to contractures
- Sufficient blood supply and lack of infection is necessary for the skin graft to take*

The Purpose of Skin Grafting

- Lessen the potential for infection
- Minimize fluid loss by evaporation
- Hasten Recovery
- Reduce Scarring
- Prevent loss of function

Skin Grafting

Sources for Grafts

- **Auto-Graft** ~ Pt own skin, permanent
- **Allograft or Homograft** ~ Human skin from a cadaver, sloughs away after one week
- **Heterograft or Xenograft** ~ animals skin (Pig) rejected in days or weeks
Types of Autografts

• Split thickness grafts ~ epidermis and a thin layer of dermis
 – Split thickness grafts – epidermis and a thin layer of dermis
 – Obtain from buttock or thigh by a dermatome
 – Less elastic, hair does not grow
 – Full thickness graft used on hands, face & neck and includes epidermis, dermis and subq tissue
 – Comparable to normal skin in appearance and can tolerate more stress

• Slit Graft ~ lace or expansile graft
 – Skin is passed through an instrument that slits it
 – Skin stretches to cover a larger area and graft stretches
Disadvantages of Auto-Skin Graft

- Painful ~ creates new wound
- Donor site scaring ~ pigment changes
- Delay in wound closure ~ waiting for donor sight to heal
- Increased costs and prolonged hospitalization
- Excessive movement on grafted area can interrupt vascularization and disrupt the graft
- Pressure garments are needed up to 2 years
 - Smoothing, reduction of scarring and prevention of contractures

Skin Substitutes

- Bioengineered materials cover the wound and promote healing
 - Applied after wound is clean and debrided
 - Interact with body tissues
 - Examples: Biobrane, Intragra
 - Removed in 2-3 weeks and replaced with a thin autograft
Cultured Skin

- **Cultured Skin** ~ wound closure product that is developed by growing the client’s own skin cells in a lab
 - Grow enough skin for the entire body in 3 weeks from a piece the size of a postage stamp
 - Use a skin substitute for coverage while skin culture is growing
 - Burns heals in 2-3 weeks
 - Skin pigmentation may not match perfectly

Nursing Management

- Assessment of wounds and client’s burn status
- Calculates & Infuses fluid replacement requirements
 - Recognizes & Treats shock
- Relieve Pain
- Wound Care ~ cleanse, dressing changes, apply medications
- Monitor for signs and symptoms of infection
- Therapeutic communication skills ~ coping, body image
- Perform ROM exercises to minimize contractures
- D/C teaching ~ pressure garment, skin care
- See care plan 23-1, pp 313-318*
Considerations

Nutritional Considerations

• Increased protein needs of about 2-4 times \(^ \text{RDA}\) (need to provide more foods like eggs, milk and meat)
• Metabolism may increase up to 100%
• Increased calorie needs
• Require supplemental vitamins and minerals

Gerontologic

• Due to diminished renal, cardiac and respiratory functions a burn can be more complicated for the elderly